专业知识分享
把脉行业热点,汲取前沿思维

半导体制造基本概念

  • 编辑: 深圳容乐电子官网
  • 发表时间:2019-11-01
  晶圆(Wafer)
  晶圆(Wafer)的生产由砂即(二氧化硅)开始,经由电弧炉的提炼还原成 冶炼级的硅,再经由盐酸氯化,产生三氯化硅,经蒸馏纯化后,透过慢速分解过程,制成棒状或粒状的「多晶硅」。一般晶圆制造厂,将多晶硅融解 后,再利用硅晶种慢慢拉出单晶硅晶棒。一支85公分长,重76.6公斤的8吋 硅晶棒,约需2天半时间长成。经研磨、拋光、切片后,即成半导体之原料晶圆片。
  光学显影
  光学显影是在光阻上经过曝光和显影的程序,把光罩上的图形转换到光阻下面的薄膜层或硅晶上。光学显影主要包含了光阻涂布、烘烤、光罩对准、 曝光和显影等程序。小尺寸之显像分辨率,更在 IC 制程的进步上,扮演着最关键的角色。由于光学上的需要,此段制程之照明采用偏黄色的可见光。因此俗称此区为 黄光区。
  干式蚀刻技术
  在半导体的制程中,蚀刻被用来将某种材质自晶圆表面上移除。干式蚀刻(又称为电浆蚀刻)是目前最常用的蚀刻方式,其以气体作为主要的蚀刻媒介,并藉由电浆能量来驱动反应。
  电浆对蚀刻制程有物理性与化学性两方面的影响。首先,电浆会将蚀刻气体分子分解,产生能够快速蚀去材料的高活性分子。此外,电浆也会把这些化学成份离子化,使其带有电荷。
  晶圆系置于带负电的阴极之上,因此当带正电荷的离子被阴极吸引并加速向阴极方向前进时,会以垂直角度撞击到晶圆表面。芯片制造商即是运用此特性来获得绝佳的垂直蚀刻,而后者也是干式蚀刻的重要角色。
  基本上,随着所欲去除的材质与所使用的蚀刻化学物质之不同,蚀刻由下列两种模式单独或混会进行:
  1. 电浆内部所产生的活性反应离子与自由基在撞击晶圆表面后,将与某特定成份之表面材质起化学反应而使之气化。如此即可将表面材质移出晶圆表面,并透过抽气动作将其排出。
  2. 电浆离子可因加速而具有足够的动能来扯断薄膜的化学键,进而将晶圆表面材质分子一个个的打击或溅击(sputtering)出来。
  化学气相沉积技术
  化学气相沉积是制造微电子组件时,被用来沉积出某种薄膜(film)的技术,所沉积出的薄膜可能是介电材料(绝缘体)(dielectrics)、导体、或半导体。在进行化学气相沉积制程时,包含有被沉积材料之原子的气体,会被导入受到严密控制的制程反应室内。当这些原子在受热的昌圆表面上起化学反应时,会在晶圆表面产生一层固态薄膜。而此一化学反应通常必须使用单一或多种能量源(例如热能或无线电频率功率)。
  CVD制程产生的薄膜厚度从低于0.5微米到数微米都有,不过最重要的是其厚度都必须足够均匀。较为常见的CVD薄膜包括有:
  ■ 二气化硅(通常直接称为氧化层)
  ■ 氮化硅
  ■ 多晶硅
  ■ 耐火金属与这类金属之其硅化物
  可作为半导体组件绝缘体的二氧化硅薄膜与电浆氮化物介电层(plasmas nitride dielectrics)是目前CVD技术最广泛的应用。这类薄膜材料可以在芯片内部构成三种主要的介质薄膜:内层介电层(ILD)、内金属介电层(IMD)、以及保护层。此外、金层化学气相沉积(包括钨、铝、氮化钛、以及其它金属等)也是一种热门的CVD应用。
  物理气相沉积技术
  如其名称所示,物理气相沉积(Physical Vapor Deposition)主要是一种物理制程而非化学制程。此技术一般使用氩等钝气,藉由在高真空中将氩离子加速以撞击溅镀靶材后,可将靶材原子一个个溅击出来,并使被溅击出来的材质(通常为铝、钛或其合金)如雪片般沉积在晶圆表面。制程反应室内部的高温与高真空环境,可使这些金属原子结成晶粒,再透过微影图案化(patterned)与蚀刻,来得到半导体组件所要的导电电路。
  解离金属电浆(IMP)物理气相沉积技术
  解离金属电浆是最近发展出来的物理气相沉积技术,它是在目标区与晶圆之间,利用电浆,针对从目标区溅击出来的金属原子,在其到达晶圆之前,加以离子化。离子化这些金属原子的目的是,让这些原子带有电价,进而使其行进方向受到控制,让这些原子得以垂直的方向往晶圆行进,就像电浆蚀刻及化学气相沉积制程。这样做可以让这些金属原子针对极窄、极深的结构进行沟填,以形成极均匀的表层,尤其是在最底层的部份。
  高温制程
  多晶硅(poly)通常用来形容半导体晶体管之部分结构:至于在某些半导体组件上常见的磊晶硅(epi)则是长在均匀的晶圆结晶表面上的一层纯硅结晶。多晶硅与磊晶硅两种薄膜的应用状况虽然不同,却都是在类似的制程反应室中经高温(600℃至1200℃)沉积而得。
  即使快速高温制程(Rapid Thermal Processing, RTP)之工作温度范围与多晶硅及磊晶硅制程有部分重叠,其本质差异却极大。RTP并不用来沈积薄膜,而是用来修正薄膜性质与制程结果。RTP将使晶圆历经极为短暂且精确控制高温处理过程,这个过程使晶圆温度在短短的10至20秒内可自室温升到1000℃。RTP通常用于回火制程(annealing),负责控制组件内掺质原子之均匀度。此外RTP也可用来硅化金属,及透过高温来产生含硅化之化合物与硅化钛等。最新的发展包括,使用快速高温制程设备在晶极重要的区域上,精确地沉积氧及氮薄膜。
  离子植入技术
  离子植入技术可将掺质以离子型态植入半导体组件的特定区域上,以获得精确的电子特性。这些离子必须先被加速至具有足够能量与速度,以穿透(植入)薄膜,到达预定的植入深度。离子植入制程可对植入区内的掺质浓度加以精密控制。基本上,此掺质浓度(剂量)系由离子束电流(离子束内之总离子数)与扫瞄率(晶圆通过离子束之次数)来控制,而离子植入之深度则由离子束能量之大小来决定。
  化学机械研磨技术
  化学机械研磨技术(Chemical Mechanical Polishing, CMP)兼其有研磨性物质的机械式研磨与酸碱溶液的化学式研磨两种作用,可以使晶圆表面达到全面性的平坦化,以利后续薄膜沉积之进行。
  在CMP制程的硬设备中,研磨头被用来将晶圆压在研磨垫上并带动晶圆旋转,至于研磨垫则以相反的方向旋转。在进行研磨时,由研磨颗粒所构成的研浆会被置于晶圆与研磨垫间。影响CMP制程的变量包括有:研磨头所施的压力与晶圆的平坦度、晶圆与研磨垫的旋转速度、研浆与研磨颗粒的化学成份、温度、以及研磨垫的材质与磨损性等等。
  制程监控
  在下个制程阶段中,半导体商用CD-SEM来量测芯片内次微米电路之微距,以确保制程之正确性。一般而言,只有在微影图案(photolithographic patterning)与后续之蚀刻制程执行后,才会进行微距的量测。
  光罩检测(Retical Inspection)
  光罩是高精密度的石英平板,是用来制作晶圆上电子电路图像,以利集成电路的制作。光罩必须是完美无缺,才能呈现完整的电路图像,否则不完整的图像会被复制到晶圆上。光罩检测机台则是结合影像扫描技术与先进的影像处理技术,捕捉图像上的缺失。当晶圆从一个制程往下个制程进行时,图案晶圆检测系统可用来检测出晶圆上是否有瑕疵包括有微尘粒子、断线、短路、以及其它各式各样的问题。此外,对已印有电路图案的图案晶圆成品而言,则需要进行深次微米范围之瑕疵检测。一般来说,图案晶圆检测系统系以白光或雷射光来照射晶圆表面。再由一或多组侦测器接收自晶圆表面绕射出来的光线,并将该影像交由高功能软件进行底层图案消除,以辨识并发现瑕疵。
  切   割
  晶圆经过所有的制程处理及测试后,切割成壹颗颗的IC。举例来说:以0.2 微米制程技术生产,每片八吋晶圆上可制作近六百颗以上的64M DRAM。
  封   装
  制程处理的最后一道手续,通常还包含了打线的过程。以金线连接芯片与导线架的线路,再封装绝缘的塑料或陶瓷外壳,并测试IC功能是否正常。由于切割与封装所需技术层面比较不高, 因此常成为一般业者用以介入半导体工业之切入点。
  300mm
  为协助晶圆制造厂克服300mm晶圆生产的挑战,应用材料提供了业界最完整的解决方案。不但拥有种类齐全的300mm晶圆制造系统,提供最好的服务与支持组织,还掌握先进制程与制程整合的技术经验;从降低风险、增加成效,加速量产时程,到协助达成最大生产力,将营运成本减到最低等,以满足晶圆制造厂所有的需求。
  应用材料的300mm全方位解决方案,完整的产品线为:
  高温处理及离子植入设备(Thermal Processes and Implant)
  介质化学气相沉积(DCVD:Dielectric Chemical Vapor Deposition)
  金属沉积(Metal Deposition)
  蚀刻(Etch)
  化学机械研磨(CMP:Chemical Mechanical Polishing)
  检视与量测(Inspection & Metrology)
  制造执行系统(MES:Manufacturing Execution System)
  服务与支持(Service & Support)
  铜制程技术
  在传统铝金属导线无法突破瓶颈之情况下,经过多年的研究发展,铜导线已经开始成为半导体材料的主流,由于铜的电阻值比铝还小,因此可在较小的面积上承载较大的电流,让厂商得以生产速度更快、电路更密集,且效能可提升约30-40%的芯片。亦由于铜的抗电子迁移(electro-migration)能力比铝好,因此可减轻其电移作用,提高芯片的可靠度。在半导体制程设备供货商中,只有应用材料公司能提供完整的铜制程全方位解决方案与技术,包括薄膜沉积、蚀刻、电化学电镀及化学机械研磨等。
  应用材料公司的铜制程全方位解决方案
  在半导体组件中制造铜导线,牵涉不仅是铜的沉积,还需要一系列完整的制程步骤,并加以仔细规划,以便发挥最大的效能。应用材料公司为发展铜制程相关技术,已与重要客户合作多年,具有丰富的经验;此外在半导体制程设备所有供货商中,也只有应用材料公司能够提供铜导线结构的完整制程技术,包括薄膜沉积、蚀刻、电化学电镀及化学机械研磨等。